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ABSTRACT
Partially Observable Markov Decision Process (POMDP) is
a popular framework for planning under uncertainty in par-
tially observable domains. Yet, the POMDP model is risk-
neutral in that it assumes that the agent is maximizing the
expected reward of its actions. In contrast, in domains like
financial planning, it is often required that the agent de-
cisions are risk-sensitive (maximize the utility of agent ac-
tions, for non-linear utility functions). Unfortunately, ex-
isting POMDP solvers cannot solve such planning prob-
lems exactly. By considering piecewise linear approxima-
tions of utility functions, this paper addresses this shortcom-
ing in three contributions: (i) It defines the Risk-Sensitive
POMDP model; (ii) It derives the fundamental properties
of the underlying value functions and provides a functional
value iteration technique to compute them exactly and (c) It
proposes an efficient procedure to determine the dominated
value functions, to speed up the algorithm. Our experiments
show that the proposed approach is feasible and applicable
to realistic financial planning domains.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Economics

Keywords
POMDPs, Risk Sensitivity, Utility Theory

1. INTRODUCTION
Recent years have seen an unprecedented rise of interest

in autonomous agents deployed in high-risk domains ranging
from military operations and planetary exploration [4] to au-
tonomous trading [9]. Simultaneously, research in devising
optimal planning policies for these agents has progressed sig-
nificantly. Partially Observable Markov Decision Processes
(POMDPs) [16] in particular have received a lot of attention,
due to their ability to handle sequential decision making, the
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Figure 1: Expected Utility maximization vs Ex-
pected Value maximization.

uncertainty of the outcomes of agent actions and the uncer-
tainty of the agent observations of the environment.

Yet, POMDP solvers [7, 8, 12, 14, 15, 17, 18] typically
maximize the expected reward of agent actions. In contrast,
in high-stake domains such as financial planning, agents are
often required to maximize the expected utility of their ac-
tions, for non-linear utility functions that characterize the
agent attitude towards risk [19, 2]. To date, only [10, 11]
have demonstrated how to solve planning problems where
risk-sensitivity is expressed via utility functions, yet, only
for problems characterized by fully observable environments.

In this paper we address these shortcomings by first defin-
ing Risk-Sensitive POMDPs. Next, by considering piecewise
linear approximations of utility functions, we provide a func-
tional value iteration method to compute the value functions
exactly, by exploiting their piecewise bilinear properties. Fi-
nally, to speed up the algorithm, we show how to find and
prune the dominated value functions using efficient approx-
imations to the underlying non-convex bilinear programs.

2. MOTIVATION
In this section, we provide an illustrative example from a

typical financial planning scenario to motivate risk sensitive
planning in partially observable domains. In this example,
we need to take a decision on whether to invest the current
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wealth of $1000. This decision has to be made considering
that the state of the market is uncertain, 20% good and
80% bad and the return on investment is also uncertain.
Figure 1 provides further details on this example setting.
In this example, for purposes of exposition, we focus on a
single decision. However, in general and in our experimen-
tal section, we consider problems where a sequential set of
decisions need to be made.

There are two ways to make decisions in such settings:
(a) Expected value maximization: This is the risk neutral
way to make decisions, i.e., by not considering that people
have various attitudes towards risk. Thus, there is always
the same decision made by this method. As shown in Fig-
ure 1, maximizing expected value provides a decision to not
invest; (b) Expected utility maximization: This mechanism
is sensitive to the risk attitude of the person and as shown
in the figure, depending on whether the person is risk seek-
ing (utility function 1) or risk averse (utility function 2), the
decision appropriately changes.

Such reasoning is required in many high stakes domains
such as disaster rescue, mars exploration, gambling where
the utility functions are non-linear and the decisions made
should be sensitive to the risk attitude. In fact, in our ex-
perimental results section, we experimented with extensions
to the illustrative problem above.

3. RISK-SENSITIVE POMDPS
Utility theory [19] defines utility functions as transform-

ing the current wealth of the agent (its initial wealth plus
the sum of the immediate rewards it received so far) into
a utility value. The theory postulates that the shape of
the utility function can be used to define the agent atti-
tude towards risk. To compute optimal policies for such
risk-sensitive agents, acting in partially observable environ-
ments, we are interested in solving finite horizon POMDPs
that maximize the expected total utility (as opposed to ex-
pected total reward) of agent actions. On account of being
sensitive to risk attitudes, we refer to these planning prob-
lems as Risk-Sensitive POMDPs and formalize them as fol-
lows: S is a finite set of discrete states of the process and A
is a finite set of agent actions. The process starts in some
state s0 ∈ S and runs for N consecutive decision epochs. In
particular, if the process is in state s ∈ S in decision epoch
0 ≤ n < N , the agent controlling it chooses an action a ∈ A
to be executed next. The agent then receives the immediate
reward R(s, a) while the process transitions with probability
P (s′|s, a) to state s′ ∈ S at decision epoch n + 1. Other-
wise, in decision epoch n = N , the process terminates. The
utility of the actions that the agent has executed is then a
scalar U(w0 +

PN−1
n=0 rn) where w0 is the initial wealth of

the agent, U is the agent utility function and rn is the im-
mediate reward that the agent received in decision epoch n.
The goal of the agent is to come up with a policy π that
maximizes its total expected utility E[U(w0 +

PN−1
n=0 rn)|π].

What further complicates the agent’s search for π is that
the process is only partially observable to the agent. That
is, the agent receives noisy information about the current
state s ∈ S of the process and can therefore only maintain
the current probability distribution b(s) over states s ∈ S
(referred to as the agent belief state). When the agent exe-
cutes some action a ∈ A and the process transitions to state
s′, the agent receives with probability O(z|a, s′) an observa-
tion z from a finite set of observations Z. The agent then

uses z to update its current belief state b, as shown later. In
the following, B denotes an infinite set of all possible agent
belief states and b0 ∈ B is the agents’ starting belief state
(unknown at the planning phase). Also, W := ∪0≤n≤NWn

is the set of all possible agent wealth levels where Wn de-
notes the set of all possible agent wealth levels in decision
epoch n. For the initial range of agent wealth levels W0 :=
[w0, w0] we determine Wn = [wn, wn] where wn = wn−1 +
mins∈S,a∈A R(s, a) and wn = wn−1 + maxs∈S,a∈A R(s, a),
for n = 1, . . . , N . (Notice, that W0 ⊂ W1 ⊂ . . . ⊂ WN .)
A policy π of the agent therefore indicates which action
π(n, b, w) ∈ A the agent should execute in decision epoch
n, belief state b, with wealth level w, for all 0 ≤ n < N ,
b ∈ B, w ∈ Wn.

4. SOLVING RISK-SENSITIVE POMDPS
We first show how value iteration [3] can be used to find

the optimal policy π∗. However, due to the continuous na-
ture of belief and wealth space, it is not practical to solve
Risk-Sensitive POMDPs with value iteration techniques (em-
ployed to solve POMDPs). To address this issue, we intro-
duce one of the key contributions of this paper: a functional
value iteration technique to solve Risk-Sensitive POMDPs.

4.1 Value Iteration
Since the value function has to be sensitive to the risk

attitudes (dependent on the current wealth), while also ac-
counting for sequential decision making under uncertainty
(both observational and transitional), we cannot employ the
same value function definition as expected value POMDPs.
We denote by V n

U (b, w) the maximum expected utility for
the agent if its starts acting in decision epoch n in belief
state b with wealth level w. The agent maximizes V n

U (b, w)
by executing an action π∗(n, b, w) that is computed by:

arg max
a∈A

˘

X

z∈Z

P (z|b, a)V n+1
U

`

T (b, a, z), w + R(b, a)
´¯

(1)

where P (z|b, a) =
P

s′∈S O(z|a, s′)
P

s∈S P (s′|s, a)b(s) is the
probability of observing z after executing action a from belief
state b, R(b, a) :=

P

s∈S b(s)R(s, a) is the expected imme-
diate reward that the agent will receive for executing action
a in belief state b and T (b, a, z) is the new belief state of
the agent after executing action a from belief state b and
observed z. Formally, for each s′ ∈ S it holds that: [16]
T (b, a, z)(s′) = [O(z|a, s′)/P (z|b, a)]

P

s∈S P (s′|s, a)b(s).
Hence, to find the optimal policy, π∗, value iteration must

calculate values V n
U (b, w) for all 0 ≤ n ≤ N , b ∈ B, w ∈

Wn. Value iteration calculates these values for n = N, N −
1, . . . , 0. Specifically, for n = N the process terminates and
thus

V N
U (b, w) = U(w) (2)

for all w ∈ WN , b ∈ B. Otherwise, for all 0 ≤ n < N ,

V n
U (b, w)

= max
a∈A

˘

X

z∈Z

P (z|b, a)V n+1
U

`

T (b, a, z), w + R(b, a)
´¯

. (3)

for all b ∈ B and w ∈ Wn. In the following, we group
values V n

U (b, w) over all (b, w) ∈ B ×W into value functions
V n

U : B×W → R, for each 0 ≤ n ≤ N . Note, that computing
value functions V n

U from value functions V n+1
U exactly may

be hard because B and W are infinite. In addition, POMDP
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solution techniques—that already handle an infinite B—are
not applicable for solving Risk-Sesitive POMDPs as they do
not handle an infinite W.

4.2 Functional Value Iteration
We now provide a functional value iteration technique for

solving Risk-Sensitive POMDPs exactly. This technique
backs up utility functions (unlike just reward values in
value iteration) defined on the wealth over the entire time
horizon. The key insight of this technique is to iteratively
construct the finite partitioning of the B ×W search space
into regions where the value functions can be represented
with point based policies. To this end, denote by Zn a set
of agent observation histories of length less than n. Also,
for each decision epoch 0 ≤ n ≤ N , we define a point based
policy π̇n as a function

π̇n : ZN−n → A (4)

and the expected utility to go of π̇n at some belief state and
wealth level pair (b, w) ∈ B ×Wn as a value:1

υ〈π̇n〉(b, w) := E[U(w +

N−1
X

n′=n

rn′)|π̇n, b0 = b]). (5)

Let {π̇n
i }i∈I(n) be a collection of point-based policies such

defined, for a decision epoch n. It is then obvious that any
policy π can be represented as some (possibly infinite) col-
lection of point-based policies. For example, to represent
π in decision epoch n we may maintain a different point-
based policy π̇n

i for each (b, w) ∈ B × Wn. In particular,
to represent π∗ in decision epoch n we may need to main-
tain a different point-based policy arg maxπ̇n

i
υ〈π̇n

i 〉(b, w) for
each (b, w) ∈ B × Wn. Fortunately, (as we show below) a
finite collection {π̇n

i }i∈I(n) is sufficient to represent π∗, for
each 0 ≤ n < N . That is, there exists a finite partitioning
{Yn

i }i∈I(n) of B×Wn and a finite collection {π̇n
i }i∈I(n) such

that υ〈π̇n
i 〉(b, w) = V n

U (b, w) for all (b, w) ∈ Yn
i .

We now show how to find such finite collections {π̇n
i }i∈I(n)

for 0 ≤ n < N that represent π∗. Our technique assumes
that the utility function U(w) is piecewise linear over w ∈
WN (or, that it has already been approximated with a piece-
wise linear function with a desired accuracy). Specifically,
we assume that there exist wealth levels wN = w1 < . . . <
wK = wN and pairs of constants (C1, D1), . . . , (CK , DK)
such that U(w) = Ckw + Dk for all w ∈ [wk, wk+1) over all
1 ≤ k ≤ K.

For such U we now claim that, for all 0 ≤ n ≤ N :

1. The value function V n
U can be represented by a finite

set of functions {υ〈π̇n
i 〉}i∈I(n). That is, there exists a

partitioning {Yn
i }i∈I(n) of B ×Wn and a set of point-

based policies {π̇n
i }i∈I(n) such that for all (b, w) ∈ B×

Wn there exists i ∈ I(n) such that (b, w) ∈ Yn
i and

V n
U (b, w) = υ〈π̇n

i 〉(b, w) = maxi′∈I(n) υ〈π̇n
i′〉(b, w).

2. For all i ∈ I(n), υ〈π̇n
i 〉 is piecewise bilinear. That is,

there exists a finite partitioning {B ×Wn
i,k}k∈I(n,i) of

B × Wn such that Wn
i,k is a convex set and for all

(b, w) ∈ B × Wn
i,k, υ〈π̇n

i 〉(b, w) =
P

s∈S b(s)(cn
i,k,sw +

dn
i,k,s), for all k ∈ I(n, i);

1Note, that υ〈π̇n
i 〉(b, w) is a function over B ×Wn.

3. For all i ∈ I(n), υ〈π̇n
i 〉 can be derived from the set of

functions {υ〈π̇n+1
i′ 〉}i′∈I(n+1).

We prove claims 1,2,3 by induction on n = N, . . . , 0. (The
reader only interested in implementing our algorithm may
wish to only implement the operations given by Equations
(19), (9), (21), (24)—in that given order.)

Induction base: Assume n = N . Let YN
0 := B × WN ,

I(N) := {0} and π̇N
0 be an arbitrary policy. Because at

decision epoch N the process terminates, it holds for all
(b, w) ∈ YN

0 that (from Equations (2) and (5)) V N
U (b, w) =

U(w) = E[U(w)] = E[U(w +
PN−1

n=N rn)|π̇N
0 , b0 = b]) =

υ〈π̇N
0 〉(b, w) = maxi∈I(N) υ〈π̇N

i 〉(b, w), which proves claim

1. Furthermore, to prove that υ〈π̇N
0 〉 is piecewise bilin-

ear, let I(N, 0) := {1, . . . , K} and WN
0,k := [wk, wk+1), k ∈

I(N, 0). Clearly, {B ×WN
0,k}k∈I(N,0) is a finite partitioning

of B × Wn and sets WN
0,k, k ∈ I(N, 0) are convex. In ad-

dition, υ〈π̇N
0 〉(b, w) =

P

s b(s)(Ckw + Dk) = Ckw + Dk for

all (b, w) ∈ B ×WN
0,k, k ∈ I(N, 0) and hence, υ〈π̇N

0 〉(b, w) is

linear—thus also piecewise bilinear—over (b, w) ∈ B ×WN ,
which proves claim 2. Finally, claim 3 holds because we con-
structed υ〈π̇N

0 〉 without even considering the set of functions
{υ〈π̇N+1

i′ 〉}i′∈I(N+1) and our choice of π̇N
0 was arbitrary. The

induction thus holds for n = N .

Induction step: Assume now that the induction holds for
n + 1. Our goal is to prove that it also holds for n. To this
end, recall from Equation (3) that V n

U (b, w) is calculated by

max
a∈A

˘

X

z∈Z

P (z|b, a)V n+1
U

`

T (b, a, z), w + R(b, a)
´¯

.

We break this calculation into five stages. First, we calcu-
late V n

U,a,z(b, w) := V n+1
U

`

T (b, a, z), w
´

where V n+1
U is repre-

sented by {υ〈π̇n+1
i 〉}i∈I(n+1) from the induction assumption.

Next, we derive V
n
U,a,z(b, w) := P (z|b, a)V n

U,a,z(b, w) and

then V n
U,a(b, w) :=

P

z∈Z V
n
U,a,z(b, w). Finally, we derive

V
n
U,a(b, w) := V n

U,a(b, w + R(b, a)) and conclude the proof of

the induction step by deriving V n
U (b, w) := maxa∈A V

n
U,a(b, w)

where V n
U is represented by {υ〈π̇n

i 〉}i∈I(n).

Stage 1: Calculate V n
U,a,z(b, w) := V n+1

U

`

T (b, a, z), w
´

.

From the induction assumption, V n+1
U is represented by

a finite set of functions {υ〈π̇n+1
i 〉}i∈I(n+1), corresponding

to point-based policies π̇i, i ∈ I(n + 1), and each υ〈π̇n+1
i 〉

is piecewise bilinear. We now prove that V n
U,a,z(b, w) :=

V n+1
U

`

T (b, a, z), w
´

can be represented by a finite set of func-
tions Vn

a,z = {υn
a,z,i}i∈I(n+1) derived from a collection of

functions {υ〈π̇n+1
i 〉}i∈I(n+1) and that each function υn

a,z,i is
piecewise bilinear. To this end, define a finite partitioning
{Yn

a,z,i}i∈I(n+1) of B ×Wn+1 where

Yn
a,z,i :=

˘

(b, w) ∈ B ×Wn+1 |υ〈π̇n+1
i 〉(T (b, a, z), w)

= max
i′∈I(n+1)

υ〈π̇n+1
i′ 〉(T (b, a, z), w)

¯

(6)

and a finite set of functions Vn
a,z = {υn

a,z,i}i∈I(n+1) where

υn
a,z,i(b, w) := υ〈π̇n+1

i 〉(T (b, a, z), w) (7)

for all (b, w) ∈ B × Wn+1. It is then true that for all
(b, w) ∈ B × Wn+1 there exists i ∈ I(n + 1) such that
(b, w) ∈ Yn

a,z,i and υn
a,z,i(b, w) := υ〈π̇n+1

i 〉(T (b, a, z), w) =
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maxi′ υ〈π̇n+1
i′ 〉(T (b, a, z), w) = V n+1

U (T (b, a, z), w) = V n
U,a,z(b, w).

Thus, V n
U,a,z(b, w) can be represented by a finite set of func-

tions Vn
a,z = {υn

a,z,i}i∈I(n+1) derived from {υ〈π̇n+1
i 〉}i∈I(n+1).

In addition, each υn
a,z,i is piecewise bilinear as proven by

Lemma 1 in the Appendix.
Finally, notice that if function υn

a,z,i ∈ Vn
a,z is dominated

by other functions υn
a,z,i′ ∈ Vn

a,z, i.e., if for any (b, w) ∈ B ×
Wn+1 there exists i′ ∈ I(n+1), i′ 
= i such that υn

a,z,i(b, w) <
υn

a,z,i′(b, w) then (from definition (6)) Yn
a,z,i = ∅. In such

case (to speed up the algorithm) υn
a,z,i can be pruned from

Vn
a,z and Yn

a,z,i be removed from {Yn
a,z,i}i∈I(n+1) as that will

not affect the representation of V n
U,a,z. (How to determine if

a function υn
a,z,i is dominated is explained later.) The value

functions V n
U,a,z(b, w) can thus be represented by a finite sets

of piecewise bilinear functions Vn
a,z = {υn

a,z,i}i∈I(n,a,z) where
I(n, a, z) ⊂ I(n + 1).

Stage 2: Calculate V
n
U,a,z(b, w) := P (z|b, a)V n

U,a,z(b, w).
Consider the value functions V n

U,a,z(b, w) represented after
stage 1 by finite sets of piecewise bilinear functions Vn

a,z =
{υn

a,z,i}i∈I(n,a,z). We now demonstrate that the value func-

tion V
n
U,a,z(b, w) := P (z|b, a)V n

U,a,z(b, w) can be represented

by a set of piecewise bilinear functions Vn
a,z = {υn

a,z,i}i∈I(n,a,z)

where

υn
a,z,i(b, w) := P (z|b, a)υn

a,z,i(b, w) (8)

for all (b, w) ∈ B×Wn+1. Indeed, since {Yn
a,z,i}i∈I(n,a,z) is a

partitioning of B×Wn+1 (from definition (6)), it holds for all
(b, w) ∈ B ×Wn+1 that there exists i ∈ I(n, a, z) such that
(b, w) ∈ Yn

a,z,i and V
n
U,a,z(b, w) := P (z|b, a)V n

U,a,z(b, w) =
P (z|b, a)υn

a,z,i(b, w) = υn
a,z,i(b, w). Furthermore, each func-

tion υn
a,z,i is piecewise bilinear over (b, w) ∈ B ×Wn+1 be-

cause for the existing partitioning {B ×Wn+1
i,k }k∈I(n+1,i) of

B ×Wn+1 it holds that

υn
a,z,i(b, w) := P (z|b, a)υn

a,z,i(b, w)

= P (z|b, a)
X

s∈S

b(s)(cn,k,s
a,z,i w + dn,k,s

a,z,i )

=
X

s∈S

b(s)(cn,k,s
a,z,i w + d

n,k,s
a,z,i ) (9)

for all (b, w) ∈ B × Wn+1
i , k ∈ I(n + 1, i) where cn,k,s

a,z,i =

P (z|b, a)cn,k,s
a,z,i and d

n,k,s
a,z,i = P (z|b, a)dn,k,s

a,z,i are constants.

Stage 3: Calculate V n
U,a(b, w) :=

P

z∈Z V
n
U,a,z(b, w). Con-

sider the value functions V
n
U,a,z represented after stage 2 by

the sets of piecewise bilinear functions Vn
a,z = {υn

a,z,i}i∈I(n,a,z).
We now show that V n

U,a can be represented with a finite set
of piecewise bilinear functions Vn

a = {υn
a,i}i∈I(n,a) derived

from the sets of functions Vn
a,z = {υn

a,z,i}i∈I(n,a,z), z ∈ Z. To
this end, let i := [i(z)]z∈Z ∈ I(n, a) denote a vector where
i(z) ∈ I(n, a, z), z ∈ Z. For each such vector i ∈ I(n, a)
define a set

Yn
a,i :=

\

z∈Z

Yn
a,z,i(z) (10)

and a function

υn
a,i(b, w) :=

X

z∈Z

υn
a,z,i(z)(b, w) (11)

for all (b, w) ∈ B × Wn+1. To show that V n
U,a can be rep-

resented with a set of functions Vn
a = {υn

a,i}i∈I(n,a) we first

prove that {Yn
a,i}i∈I(n,a) is a finite partitioning of B×Wn+1.

To this end, first observe that Yn
a,i ∩ Yn

a,i′ = ∅ for all i, i′ ∈
I(n, a), i 
= i′. Indeed, if i 
= i′ then i(z) 
= i′(z) for some
z ∈ Z. Thus, if (b, w) ∈ Yn

a,i ∩ Yn
a,i′ then in particular

(b, w) ∈ Yn
a,z,i(z) ∩ Yn

a,z,i′(z) which is impossible because

Yn
a,z,i(z) ∩Yn

a,z,i′(z) = ∅ for i(z) 
= i′(z) (from definition (6)).

Also, if (b, w) ∈ B × Wn+1 then for all z ∈ Z there exists
some i(z) ∈ I(n, a, z) such that (b, w) ∈ Yn

a,z,i(z) (from defi-
nition (6)). Hence, for the vector i := [i(z)]z∈Z ∈ I(n, a) it
must hold that (b, w) ∈ T

z∈Z Yn
a,z,i(z) = Yn

a,i.
We then show that V n

U,a can be represented with a set of
functions Vn

a = {υn
a,i}i∈I(n,a) as follows: Since {Yn

a,i}i∈I(n,a)

is a partitioning of B ×Wn+1, for each (b, w) ∈ B ×Wn+1

there exists i = [i(z)]z∈Z ∈ I(n, a) such that (b, w) ∈ Yn
a,i

and V n
U,a(b, w) :=

P

z∈Z V
n
U,a,z(b, w) =

P

z∈Z υn
a,z,i(z)(b, w) =

υn
a,i(b, w). In addition, each function υn

a,i(b, w) is piecewise
bilinear as proven by Lemma 2 in the Appendix.

Finally, notice that if function υn
a,i ∈ Vn

a is dominated by
other functions υn

a,i′ ∈ Vn
a then Yn

a,i = ∅. Precisely, for any

(b, w) ∈ B×Wn+1, if there exists some other function υn
a,i′ ∈

Vn
a such that υn

a,i(b, w) < υn
a,i′(b, w) then (from definition 11)

υn
a,z,i(z)(b, w) < υn

a,z,i′(z)(b, w) for some z ∈ Z and obviously
(from definition (9)) υn

a,z,i(z)(b, w) < υn
a,z,i′(z)(b, w) which

implies that (from definition (6)) (b, w) 
∈ Yn
a,z,i(z) and ob-

viously (from definition (10)), (b, w) 
∈ Yn
a,i. Therefore (to

speed up the algorithm), if function υn
a,i ∈ Vn

a is dominated
by other functions υn

a,i′ ∈ Vn
a then υn

a,i can be pruned from
Vn

a and set Yn
a,i be removed from {Yn

a,i}i∈I(n,a) as that will
not affect the representation of V n

U,a. (How to determine if
a function υn

a,i is dominated is explained later.)

Stage 4:
Calculate V

n
U,a(b, w) := V n

U,a(b, w + R(b, a)).
For notational convenience in this stage (but without the

loss of precision), we denote vectors i,k defined in stage
3, as i, k. Recall that Wn is the set of all possible wealth
levels at decision epoch n and that Wn−1 = [wn−1, wn−1] ⊂
[wn, wn] = Wn where wn = wn−1 + mins∈S,a∈A R(s, a) and
wn = wn−1 +maxs∈S,a∈A R(s, a), for all 1 ≤ n ≤ N . Hence,
we only have to calculate the values V

n
U,a(b, w), (b, w) ∈ B×

Wn, from the values V n
U,a(b, w+R(b, a)), (b, w) ∈ B×Wn+1.

To this end, we show how to represent V
n
U,a(b, w), (b, w) ∈

B×Wn with a finite set of piecewise bilinear functions Vn
a =

{υn
a,i : B×Wn → R}i∈I(n,a) derived from the set of piecewise

bilinear functions Vn
a = {υn

a,i : B×Wn+1 → R}i∈I(n,a) from
stage 3. Formally, for each i ∈ I(n, a) define a set

Yn
a,i :=

˘

(b, w) ∈ B ×Wn such that

(b, w + R(b, a)) ∈ Yn
a,i

¯

(12)

and a function

υn
a,i(b, w) := υn

a,i(b, w + R(b, a)). (13)

To show that V
n
U,a can be represented by {Vn

a = {υn
a,i}i∈I(n,a)

we first need to prove that {Yn
a,i}i∈I(n,a) is a finite parti-

tioning of B ×Wn. Indeed, if (b, w) ∈ Yn
a,i ∩ Yn

a,j for some
i, j ∈ I(n, a) then (b, w+R(b, a)) ∈ Yn

a,i∩Yn
a,j and thus i = j

because {Yn
a,i}i∈I(n,a) is a partitioning of B × Wn+1 (from

stage 3). In addition, for any (b, w) ∈ B ×Wn we have that
(b, w + R(b, a)) ∈ B ×Wn+1 (because mins∈S,a∈A R(s, a) ≤
R(b, a) ≤ maxs∈S,a∈A R(s, a) and thus, (b, w + R(b, a)) ∈
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Yn
a,i for some i ∈ I(n, a), which implies (from definition

(12)) that (b, w) ∈ Yn
a,i.

We then show that V
n
U,a(b, w) can be represented for all

(b, w) ∈ B×Wn with the set of functions Vn
a = {υn

a,i}i∈I(n,a)

as follows: Since {Yn
a,i}i∈I(n,a) is a finite partitioning of B×

Wn, for all (b, w) ∈ B×Wn there exists i ∈ I(n, a) such that
(b, w) ∈ Bn

a,i×Wn
a,i and V

n
U,a(b, w) := V n

U,a(b, w+R(b, a)) =
υn

a,i(b, w + R(b, a)) = υn
a,i(b, w). In addition, each function

υn
a,i(b, w) ∈ Vn

a is piecewise bilinear over (b, w) ∈ B × Wn

and can be derived from υn
a,i ∈ Vn

a , as shown in Lemma (3)
in the Appendix.

Stage 5:
Calculate V n

U (b, w) := maxa∈A V
n
U,a(b, w).

Consider the value functions V
n
U,a represented after stage

4 by the set of piecewise bilinear functions Vn
a = {υn

a,i}i∈I(n,a).
To conclude the proof of the induction step, we show how
to represent V n

U with a finite set of piecewise bilinear func-
tions Vn = {υ〈π̇n

(a,i)〉}(a,i)∈I(n) derived from functions from

sets Vn
a , a ∈ A. To this end, let I(n) := {(a, i)|a ∈ A, i =

[i(z)]z∈Z ∈ I(n, a)}. For each pair (a, i) ∈ I(n) then define
a set

Yn
(a,i) := {(b, w) ∈ B ×Wn | υn

a,i(b, w)

= max
(a′,i′)∈I(n)

υn
a′,i′(b, w)} (14)

and a point based policy π̇n
(a,i) according to which the agent

first executes action a ∈ A and then, depending on the ob-
servation z ∈ Z received, follows the policy π̇n+1

i(z) given by

the induction assumption.
Clearly, {Yn

(a,i)}(a,i)∈I(n) is a finite partitioning of B ×
Wn. Thus, for all (b, w) ∈ B × Wn there exists some
(a, i) ∈ I(n) such that (b, w) ∈ Yn

(a,i) and V n
U (b, w) :=

maxa′∈A V
n
U,a′(b, w) = max(a′,i′)∈I(n) υn

a′,i(b, w) = υn
a,i(b, w) =

υ〈π̇n
(a,i)〉(b, w) (the last equality follows directly from def-

initions (13) (11) (8) (7)). Therefore, V n
U can indeed be

represented by a finite set of piecewise bilinear functions
Vn = {υ〈π̇n

(a,i)〉}(a,i)∈I(n) = {υn
a,i}(a,i)∈I(n) derived (through

stages 1,2,3,4,5) from functions {υ〈π̇n+1
i′ 〉}i′∈I(n+1), which

proves claims 1, 2 and 3 of the induction step and the whole
proof by induction.

Finally, notice that if a function υ〈π̇n
(a,i)〉 ∈ Vn is dom-

inated by other functions υ〈π̇n
(a′,i′)〉 ∈ Vn, i.e., if for all

(b, w) ∈ B×Wn there exists some υ〈π̇n
(a′,i′)〉 ∈ Vn such that

υ〈π̇n
(a,i)〉(b, w) < υ〈π̇n

(a′,i′)〉(b, w) then Yn
(a,i) = ∅. In such

case, (to speed up the algorithm) υ〈π̇n
(a,i)〉 can be pruned

from Vn and Yn
(a,i) be removed from {Yn

(a,i)}(a,i)∈I(n) as that
will not affect the representation of V n

U . (How to determine
if function υ〈π̇n

(a,i)〉 is dominated is explained in the next
section.)

5. PRUNING THE DOMINATED BILINEAR
FUNCTIONS

In stages 1,3,5 of the proof by induction we indicated the
possibility to speed up the algorithm by pruning from a set of
piecewise bilinear functions these functions that are jointly
dominated by other functions. The goal of this section is
then to show how to quickly and accurately identify if a
function is dominated or not. Formally, for a set of piecewise
bilinear functions V = {υi : B × W → R}i∈I we now show
how to determine if some υj ∈ V is dominated, i.e., if for

all (b, w) ∈ B × W there exists υi ∈ V, i 
= j such that
υi(b, w) > υj(b, w).

Let υi ∈ V be piecewise bilinear over B×W, i.e., there is a
partitioning {B×Wi,k}1≤k≤K(i) of B×W such that set Wi,k

is convex and υi(b, w) =
P

s∈S cs
i,kw + ds

i,k for all (b, w) ∈
B × Wi,k, 1 ≤ k ≤ K(i). Thus, there must exist wealth
levels w = wi,0 < . . . < wi,k < . . . < wi,K(i) = w such that
Wi,k = [wi,k−1, wi,k] for all 1 ≤ k ≤ K(i). In determining
whether υj ∈ V is dominated we first split functions of V into
functions defined over common wealth intervals. Precisely,
let W = {wk}0≤k≤K :=

S

i∈I{wi,k}1≤k≤K(i) be a set of
common wealth levels where w = w0 < . . . < wk < . . . <
wK = w. For all (b, w) ∈ B× [wk−1, wk], 1 ≤ k ≤ K we then

represent υi(b, w) with υi,k(b, w) :=
P

s∈S cs
i,kw+d

s
i,k where

cs
i,k := cs

i,k′ , d
s
i,k := d

s
i,k′ for k′ such that w ∈ [wi,k′−1, wi,k′ ],

for all i ∈ I.
υj ∈ V is then not dominated if there exists 1 ≤ k ≤ K

and (b, w) ∈ B × [wk−1, wk] such that for all υi ∈ V, i 
= j
it holds that υi,k(b, w) < υj,k(b, w). That is, if for some
1 ≤ k ≤ K there exists a feasible solution (b,w) to Program

max 0

˛

˛

˛

˛

˛

˛

υj,k(b,w) − υi,k(b,w) > 0 ∀υi ∈ V
wk−1 ≤ w ≤ wk
P

s∈S b(s) = 1
(15)

also written as

max 0

˛

˛

˛

˛

˛

˛

P

s∈S b(s)(cs
i,j,kw + ds

i,j,k) > 0 ∀υi ∈ V
wk−1 ≤ w ≤ wk
P

s∈S b(s) = 1
(16)

where b = [b(s)]s∈S is a vector, cs
i,j,k := cs

j,k − cs
i,k and

ds
i,j,k := d

s
j,k − d

s
i,k. Unfortunately, Program (16) is hard to

solve exactly, because of non-linear, non-convex constraints
P

s∈S b(s)(cs
i,j,kw + ds

i,j,k) > 0, υi ∈ V.

5.1 Error-free Pruning
Observe that, by relaxing the constraints of Program (16),

we can only increase the chance of finding a feasible solution
(b,w) i.e, only decrease the chance of pruning υj from V.
Therefore such a relaxation does not violate the optimality
of the algorithm but rather, may result in keeping in V some
of the dominated functions, which may slow down the algo-
rithm. A relaxation that we propose approximates Program
(16) with a linear program

max 0

˛

˛

˛

˛

˛

˛

P

s∈S x(s)cs
i,j,k + b′(s)ds

i,j,k > 0 ∀υi ∈ V
b′(s)wk−1 ≤ x(s) ≤ b′(s)wk ∀s ∈ S
P

s∈S b′(s) = 1
(17)

where b′ = [b′(s)]s∈S and x = [x(s)]s∈S are vectors. Pro-
gram (17) relaxes Program (16) because for any feasible so-
lution (b,w) there exists a corresponding feasible solution
(b′ := b,x := bw). Indeed, if

P

s∈S b(s)(cs
i,j,kw + ds

i,j,k) >
0 in Program (16) then

P

s∈S b(s)wcs
i,j,k + b(s)ds

i,j,k > 0
and thus,

P

s∈S x(s)cs
i,j,k + b′(s)ds

i,j,k > 0 in Program (17),
for all υi ∈ V. Next, if wk−1 ≤ w ≤ wk in Program
(16) then for all s ∈ S, b(s)wk−1 ≤ b(s)w ≤ b(s)wk

and thus b′(s)wk−1 ≤ x(s) ≤ b′(s)wk in Program (17).
Finally, if

P

s∈S b(s) = 1 then
P

s∈S b′(s) = 1. Con-
versely, a feasible solution (b′,x) may not imply a corre-
sponding feasible solution (b,w). Specifically, even though
P

s∈S x(s)cs
i,j,k + b′(s)ds

i,j,k > 0 in Program (17) implies
that

P

s∈S b′(s)([x(s)/b′(s)]cs
i,j,k +ds

i,j,k) > 0, all the ratios
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[x(s)/b′(s)], s ∈ S would need to be equal to some unique
wk−1 ≤ w ≤ wk for

P

s∈S b′(s)(cs
i,j,kw+ds

i,j,k) > 0 to hold.
Because Program (17) relaxes Program (16), its decision

to not prune υj from V—a result of finding a feasible solution
(b′,x)—may be too conservative. However, as we now show,
the smaller the wealth interval [wk−1, wk], the more accurate
Program (17) becomes, that is, the greater the chance that a
feasible solution (b′,x) implies a feasible solution (b,w). To
see it, for a given feasible solution (b,x), let (b := b′,w :=
wk−1) be a candidate solution to Program (16). Clearly
P

s∈S b(s) = 1 and wk−1 ≤ w ≤ wk. In addition, for all
υi ∈ V it holds for Cmax

i := maxs∈S |cs
i,j,k| that

(wk − wk−1)Cmax
i +

X
s∈S

b(s)(cs
i,j,kw + ds

i,j,k)

=
X
s∈S

b′(s)(wk − wk−1)Cmax
i +

X
s∈S

b′(s)(cs
i,j,kw + ds

i,j,k)

≥
X
s∈S

(x(s) − b′(s)wk−1)cs
i,j,k +

X
s∈S

b′(s)(cs
i,j,kw + ds

i,j,k)

=
X
s∈S

x(s)cs
i,j,k − b′(s)wk−1cs

i,j,k + b′(s)wk−1cs
i,j,k + b′(s)ds

i,j,k

=
X
s∈S

x(s)cs
i,j,k + b′(s)ds

i,j,k > 0

and thus, limwk−wk−1→0 Pr
ˆ

P

s∈S b(s)(cs
i,j,kw + ds

i,j,k) >

0
˜

= 1. Consequently, as wk − wk−1 → 0, the probabil-
ity that a feasible solution (b′,x) implies a feasible solution
(b,w) approaches 1 and the error of approximating Program
(16) with Program (17) approaches 0.

5.2 Error-bounded Pruning
We conclude this section by noting that, to speed up the

algorithm, we can tighten the constraint
P

s∈S x(s)cs
i,j,k +

b′(s)ds
i,j,k > 0 of Program (17) by some ε > 0. Specifically,

we are less likely to find a feasible solution to Program

max 0

˛

˛

˛

˛

˛

˛

P

s∈S x(s)cs
i,j,k + b′(s)ds

i,j,k > ε ∀υi ∈ V
b′(s)wk−1 ≤ x(s) ≤ b′(s)wk ∀s ∈ S
P

s∈S b′(s) = 1
(18)

than to Program (17) and thus, more likely to prune more
functions from V, which can speed up the algorithm. How-
ever, Program (18) may classify some of the non-dominated
functions as dominated ones and hence, the pruning pro-
cedure will no longer be error-free. The total error of the
algorithm, however, can trivially be bounded by ε · 3 · N ,
where a tunable parameter ε of Program (18) is the error
of the pruning procedure, 3 is the number of stages (of the
proof by induction) that call the pruning procedure and N
is the planning horizon.

6. EXPERIMENTS
We illustrate that our algorithm easily scales to larger ex-

tensions on the illustrative example problem provided in Sec-
tion 2. We considered a bigger domain, where there are 100
different states of the market (primarily considering markets
of different countries), considering 5 different actions to in-
vest in markets of different countries. With respect to the
algorithm, we tested with different values (0.5,1,1.5,2,2.5)
of our approximation parameter ε (used in Program (18)).
Also, the planning horizon was fixed at N = 10 and we run
the algorithm for each utility function (A), (B), (C), (D), (E)
in Figure 2. We present our results in Figure 2, where ε is

plotted on the x−axis whereas the runtime (in seconds on
the logarithmic scale) and the solution quality are plotted on
the y−axes. As can be seen, irrespective of the utility func-
tion considered, the algorithm runtime decreases drastically
(with only small increases in ε) while the solution quality re-
mains almost constant. For example, for the utility function
(C), a change of ε from 0.5 to 1.5 caused the reduction of
the algorithm runtime by over one order of magnitude (from
149s to only 12s) and only 18% (from 9.08 to 7.38) decrease
of the solution quality.

7. CONCLUSIONS AND RELATED WORK
Motivated by high-risk domains such as financial plan-

ning, in this paper we proposed Risk-Sensitive POMDPs,
an extension of POMDPs that allows the agents to maxi-
mize the expected utility of their actions, and an exact al-
gorithm for solving Risk-Sensitive POMDPs, for piecewise
linear utility functions. The key idea of the algorithm is to
represent the underlying value functions with sets of piece-
wise bilinear functions—computed exactly using functional
value iteration—and to prune the dominated bilinear func-
tions using efficient linear programming approximations of
the underlying non-convex bilinear programs.

In terms of related work, POMDP solvers [7, 8, 12, 14, 15,
17, 18] are risk-invariant in that they maximize the expected
reward of agent actions. One could argue that if W is fi-
nite then, rather than solving a Risk-Sensitive POMDP, the
underlying risk-sensitive planning problems could be cast
as POMDPs with augmented state-spaces S′ := S × W
and transition, observation and reward functions modified
accordingly. However, such an approach suffers from two
problems: (a) State space increases considerably even for
small number of wealth samples and so does the complexity
of solving POMDPs; and (b) It is difficult to know before
hand the number of wealth samples that would provide good
quality solutions.

To remedy that, one could view W as a continuous state
and use existing continuous POMDP solvers [5, 13] to find
the underlying value functions. However, not only are these
continuous POMDP solvers locally optimal, but in addition,
it is unclear if they are directly applicable to risk-sensitive
planning as the Bellman update operator they employ dif-
fers significantly from the operator given by Equation (3).
In fact, only [10, 11] have provided the algorithms for solving
planning problems where risk-sensitivity is addressed head-
on (via one-switch or piecewise linear utility functions), yet,
only for MDPs. Finally, beyond utility theory [19] there
are other methods to express the agent’s sensitivity towards
risk [1]. However, as illustrated in [6], these methods typi-
cally cannot be handled by Bellman agents, even when the
environment is fully observable.
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Figure 2: Runtime and solution quality comparison for different utility functions and approximation param-
eters ε.
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APPENDIX
Lemma 1. Function υn

a,z,i := υ〈π̇n+1
i 〉(T (b, a, z), w) is piece-

wise bilinear over (b, w) ∈ B ×Wn+1.

Proof. From induction assumption, υ〈π̇n+1
i 〉(b, w) is piece-

wise bilinear over (b, w) ∈ B×Wn+1, i.e., there exists a finite
partitioning {B × Wn+1

i,k }k∈I(n+1,i) of B × Wn+1 such that

Wn+1
i,k is a convex set and υ〈π̇n+1

i 〉(b, w) =
P

s∈S b(s)(cn+1
i,k,sw+

dn+1
i,k,s) for all (b, w) ∈ B × Wn+1

i,k , k ∈ I(n + 1, i). We now

prove that υn
a,z,i(b, w) := υ〈π̇n+1

i 〉(T (b, a, z), w) too is piece-

wise bilinear over (b, w) ∈ B × Wn+1 for the partitioning
{B × Wn+1

i,k }k∈I(n+1,i) of B × Wn+1. To this end, for each

s ∈ S distinguish a belief state bs ∈ B such that bs(s) = 1.
It then holds for all (b, w) ∈ B ×Wn+1

i , k ∈ I(n + 1, i) that

υn
a,z,i(b, w) := υ〈π̇n+1

i 〉(T (b, a, z), w)

=
X

s′∈S

[T (b, a, z)(s′)](cn+1
i,k,s′w + dn+1

i,k,s′)

=
X

s′∈S

X

s∈S

b(s)[T (bs, a, z)(s′)](cn+1
i,k,s′w + dn+1

i,k,s′)

=
X

s∈S

b(s)
X

s′∈S

P (s′|s, a)O(z|a, s′)(cn+1
i,k,s′w + dn+1

i,k,s′)

=
X

s∈S

b(s)(cn,k,s
a,z,i w + dn,k,s

a,z,i ) (19)

for constants cn,k,s
a,z,i =

P

s′∈S P (s′|s, a)O(z|a, s′)cn+1
i,k,s′ and

dn,k,s
a,z,i =

P

s′∈S P (s′|s, a)O(z|a, s′)dn+1
i,k,s′ . Consequently, func-

tion υn
a,z,i(b, w) is piecewise bilinear over (b, w) ∈ B×Wn+1

which proves the Lemma.
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Lemma 2. Function υn
a,i(b, w) :=

P

z∈Z υn
a,z,i(z)(b, w) is

piecewise bilinear over (b, w) ∈ B ×Wn+1.

Proof. After stage 2 it holds for all z ∈ Z that υn
a,z,i(z)(b, w)

is piecewise bilinear over (b, w) ∈ B×Wn+1, i.e., there exist a
partitioning {B×Wn+1

i(z),k}k∈I(n+1,i(z)) of B×Wn+1 such that

Wn+1
i(z),k is a convex set and υn

a,z,i(z)(b, w) =
P

s∈S b(s)(cn,k,s
a,z,i(z)w+

d
n,k,s
a,z,i(z)) for all (b, w) ∈ B × Wn+1

i(z),k, k ∈ I(n + 1, i(z)). To

prove that υn
a,i(b, w) :=

P

z∈Z υn
a,z,i(z)(b, w) too is piece-

wise bilinear over (b, w) ∈ B × Wn+1 we represent υn
a,i

with the set of bilinear functions {υn
a,i,k}k∈I(n,a,i). Pre-

cisely, let k := [k(z)]z∈Z ∈ I(n, a, i) denote a vector where
k(z) ∈ I(n+1, i(z)). For each vector k ∈ I(n, a, i) we define
a set

Wn+1
a,i,k :=

\

z∈Z

Wn+1
i(z),k(z) (20)

and a bilinear function

υn
a,i,k(b, w) :=

X

s∈S

b(s)(cn,k,s
a,i w + dn,k,s

a,i ) (21)

for all (b, w) ∈ B×Wn+1 and constants cn,k,s
a,i :=

P

z∈Z c
n,k(z),s

a,z,i(z) ,

dn,k,s
a,i :=

P

z∈Z d
n,k(z),s

a,z,i(z) . To show that υn
a,i(b, w) can be rep-

resented by {υn
a,i,k(b, w)}k∈I(n,a,i) over all (b, w) ∈ B×Wn+1

we first prove that {B×Wn+1
a,i,k}k∈I(n,a,i) is a finite partition-

ing of B × Wn+1. To this end, first observe that Wn+1
a,i,k ∩

Wn+1
a,i,k′ = ∅ for any k,k′ ∈ I(n, a, i),k 
= k′. Indeed, if

k 
= k′ then k(z) 
= k′(z) for some z ∈ Z. Hence, if w ∈
Wn+1

a,i,k∩Wn+1
a,i,k′ then in particular w ∈ Wn+1

i(z),k(z)∩Wn+1
i(z),k′(z)

which is cannot be true as Wn+1
i(z),k(z) ∩ Wn+1

i(z),k′(z) = ∅ for

k(z) 
= k′(z) (from claim 2 of the induction assumption).
Also, observe that for any w ∈ Wn+1 there must exist
k ∈ I(n, a, i) such that w ∈ Wn+1

a,i,k, because for all z ∈ Z,

there exists k(z) ∈ I(n + 1, i(z)) such that w ∈ Wn+1
i(z),k(z)

(since {Wn+1
i(z),k(z)}k(z)∈(n+1,i(z)) is a partitioning of Wn+1,

from claim 2 of the induction assumption). Thus, vector
k := [k(z)]z∈Z ∈ I(n, a, i) such that w ∈ T

z∈Z Wn+1
a,i(z),k(z) =

Wn+1
a,i,k truly exists. Consequently, {Wn+1

a,i,k}k∈I(n,a,i) is a fi-

nite partitioning of Wn+1 and {B×Wn+1
a,i,k}k∈I(n,a,i) a finite

partitioning of B ×Wn+1.
We can therefore prove that functions {υn

a,i,k}k∈I(n,a,i)

represent υn
a,i(b, w) over all (b, w) ∈ B × Wn+1 as follows:

For each (b, w) ∈ B × Wn+1 there exists k ∈ I(n, a, i)
such that (b, w) ∈ B × Wn+1

a,i,k. Hence, (from definition

(20)) (b, w) ∈ B ×Wn+1
i(z),k(z) and thus, (from definition (9))

υn
a,z,i(z)(b, w) =

P

s∈S b(s)(c
n,k(z),s

a,z,i(z) w + d
n,k(z),s

a,z,i(z) ). We can

then easily prove that υn
a,i(b, w) :=

P

z∈Z υn
a,z,i(z)(b, w) =

P

z∈Z

P

s∈S b(s)(c
n,k(z),s

a,z,i(z) w + d
n,k(z),s

a,z,i(z) ) =
P

s∈S(cn,k,s
a,i w +

dn,k,s
a,i ) = υn

a,i,k(b, w). Finally, each set Wn+1
a,i,k is convex be-

cause (from definition (20)) it is an intersection of convex
sets Wn+1

i(z),k(z), z ∈ Z.

Lemma 3. Function υn
a,i(b, w) := υn

a,i(b, w + R(b, a)) is
piecewise bilinear over (b, w) ∈ B ×Wn.

Proof. After stage 3 it is true for all i ∈ I(n, a) that
υn

a,i(b, w) is piecewise bilinear over (b, w) ∈ B ×Wn+1, i.e.,

there exist a partitioning {B×Wn+1
a,i,k}k∈I(n,a,i) of B×Wn+1

such that Wn+1
a,i,k is convex and υn

a,i(b, w) = υn
a,i,k(b, w) =

P

s∈S b(s)(cn,k,s
a,i w+dn,k,s

a,i ) for all (b, w) ∈ B×Wn+1
a,i,k, for all

k ∈ I(n, a, i). To prove that υn
a,i(b, w) := υn

a,i(b, w +R(b, a))
is piecewise bilinear over (b, w) ∈ B ×Wn we represent υn

a,i

with a set of bilinear functions {υn
a,i,k}k∈I(n,a,i). To this

end, first, for each k ∈ I(n, a, i), s ∈ S define a set

Wn,s
a,i,k := {w ∈ Wn | w + R(s, a) ∈ Wn+1

a,i,k}. (22)

Now, let k := [k(s)]s∈S denote a vector where k(s) ∈ I(n, a, i).
I(n, a, i) is a set of all such vectors k. For each vector
k ∈ I(n, a, i) then define a set

Wn
a,i,k :=

\

s∈S

Wn,s
a,i,k(s) (23)

and a bilinear function

υn
a,i,k(b, w) :=

X

s∈S

b(s)(c
n,k(s),s
a,i w + d

n,k(s),s
a,i ) (24)

for all (b, w) ∈ B × Wn where c
n,k(s),s
a,i := c

n,k(s),s
a,i and

d
n,k(s),s
a,i := d

n,k(s),s
a,i +c

n,k(s),s
a,i R(s, a) are constants. To show

that υn
a,i can be represented by {υn

a,i,k}k∈I(n,a,i) we first

prove that {Wn
a,i,k}k∈I(n,a,i) is a finite partitioning of Wn.

Indeed, for any k,k′ ∈ I(n, a, i) if w ∈ Wn
a,i,k ∩Wn

a,i,k′ then

(from definition (23)) for all s ∈ S, w ∈ Wn,s
a,i,k(s)∩Wn,s

a,i,k′(s)
and thus (from definition (22)) w + R(s, a) ∈ W n+1

a,i,k(s) ∩
W n+1

a,i,k′(s) for all s ∈ S, which can only hold if k = k′ (be-

cause {W n+1
a,i,k(s)}k(s)∈I(n,a,i) is a partitioning of Wn+1). In

addition, for any w ∈ Wn, s ∈ S it holds that w + R(s, a) ∈
Wn+1 and thus, there must exists some k(s) ∈ I(n, a, i)
such that w + R(s, a) ∈ Wn+1

a,i,k(s). Therefore (from defi-

nition (22)) w ∈ Wn
a,i,k(s) for all s ∈ S and thus (from

definition (23)) w ∈ Wn
a,i,k. We have therefore proven that

{Wn
a,i,k}k∈I(n,a,i) is a finite partitioning of Wn and that

{B ×Wn
a,i,k}k∈I(n,a,i) is a finite partitioning of B ×Wn.

We then show that functions {υn
a,i,k}k∈I(n,a,i) represent

υn
a,i(b, w) over all (b, w) ∈ B × Wn as follows: For each

(b, w) ∈ B × Wn there must exist k ∈ I(n, a, i) such that

(b, w) ∈ B × Wn
a,i,k and (b, w + R(s, a)) ∈ B × Wn+1

a,i,k(s)

∀s ∈ S, for which it holds that2

υn
a,i(b, w) := υn

a,i(b, w + R(b, a))

=
X

s∈S

b(s)υn
a,i(bs, w + R(bs, a))

=
X

s∈S

b(s)
X

s′∈S

bs(s
′)(cn,k(s),s′

a,i (w + R(s, a)) + d
n,k(s),s′
a,i )

=
X

s∈S

b(s)(c
n,k(s),s
a,i w + c

n,k(s),s
a,i R(s, a) + d

n,k(s),s
a,i )

=
X

s∈S

b(s)(c
n,k(s),s
a,i w + d

n,k(s),s
a,i ) = υn

a,i,k(b, w) (25)

Finally, each set Wn
a,i,k is convex because it is an intersection

of convex sets Wn,s
a,i,k(s), s ∈ S (translation of a convex set

Wn+1
a,i,k(s) by a vector R(s, a) results in a convex set).

2Recall that for each s ∈ S we distinguish bs ∈ B such that
bs(s) = 1.
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